DRIVERS OF SHORT-TERM OVERPRODUCTION: EXCESS CAPITAL INVESTMENT AND PRODUCTION DECISIONS BASED ON PAST INFORMATION

Haihong He

The BRC Academy Journal of Business 9, no. 1 (2019): 45-60.

http://dx.doi.org/10.15239/j.brcacadjb.2019.09.01.ja03

WEB APPENDIX

http://dx.doi.org/10.15239/j.brcacadjb.2019.09.01.wa03

Table 1 Descriptive Statistics

Panel A Variables Used in Testing H1

	Mean	Std	Q1	Median	Q3	N
CPAI	-0.00715	0.2146	-0.0434	0	0.0389	9,480
$\Delta F A_t$	0.000246	0.0680	-0.0201	-0.00407	0.0169	9,480
$\Delta F A_{t\text{-}1}$	0.000483	0.7866	-0.0243	-0.00712	0.0158	9,480
$\Delta \Delta F A_{t\text{-}1}$	0.000562	0.7876	-0.0271	-0.00944	0.0154	9,480
Log(AT)	5.5715	2.5107	3.9180	5.6370	7.3277	9,480
Tobin's Q	3.2245	37.2464	0.8894	1.3613	2.3288	9,480
Industry	0.0404	0.1127	0.0121	0.0440	0.0879	9,480
Growth						

Panel B Variables Used in Testing Research Question 2

	Mean	Std	Q1	Median	Q3	N
CPAI	-0.0051	0.1891	-0.0410	0.0000	0.0372	10,266
Prod _t /TA _{t-1}	0.7484	1.7768	0.3432	0.5911	0.9222	10,266
$Sales_{t\text{-}1}/TA_{t\text{-}1}$	0.9590	0.5840	0.5801	0.8818	1.2610	10,266
Sales _t /TA _{t-1}	1.0068	0.6136	0.6077	0.9323	1.3143	10,266
$Sales_{t+1}/TA_{t-1}$	1.0589	0.6911	0.6156	0.9542	1.3771	10,266

CPAI is calculated as $\Delta INV_t/(COGS_t + \Delta INV_t)$ - $\Delta INV_{t-1}/(COGS_{t-1} + \Delta INV_{t-1})$. In the expression, ΔINV_t and ΔINV_{t-1} represent a firm's annual inventory change in years t and t-1, respectively, calculated based on total (absorption-costing based) inventory value (COMPUSTAT DATA#3). *COGS* represents a firm's cost of goods sold (COMPUSTAT DATA#41), adjusted upward for depreciation expense (DATA#14).

 ΔFA_t is excess production capacity in year t, which is computed as change in gross fixed assets scaled by total assets minus corresponding industry mean based on two digit SIC code. Similarly, we calculated ΔFA_{t-1} and ΔFA_{t-2} in years t-1 and t-2, respectively.

Log (AT) is natural logarithm of total assets to proxy for business size (Log(AT)).

Tobin's Q is calculated as (market value of equity + total liability)/total assets.

Industry Growth is the mean of industry sales changes to proxy for the industry business growth.

 $Prod_t/TA_{t-1}$ is the sum of the cost of goods sold and the change in inventory during the year scaled by total assets at the beginning of the year.

Sales_{t-1}/TA_{t-1} is prior year sales scaled by total assets at the beginning of the year.

 $Sales_t/TA_{t-1}$ is current year sales scaled by total assets at the beginning of the year.

 $Sales_{t+1}/TA_{t-1}$ is future year sales scaled by total assets at the beginning of the year.

Table 2 Regression Results of Equation (1) to Test H1

 $CPAI_{t} = \alpha 0 + \alpha 1\Delta FA_{t} + \alpha 2\Delta FA_{t-1} + \alpha 3\Delta FA_{t-2} + Control Variables + \varepsilon_{t}$ (1)

	Estimated Coefficient	
Intercept	-0.0074***	
	(14.30)	
$\Delta F A_t$	0.1007***	
	(76.53)	
$\Delta F A_{t\text{-}1}$	-0.0009	
	(0.89)	
ΔFA_{t-2}	0.0006	
	(0.36)	
Log(AT)	-0.0000	
	(0.01)	
Tobin's Q	-0.0000	
	(0.06)	
Industry Growth	0.1432***	
	(425.89)	
Adj. R ²	0.0184	
N	9,480	

^{***, **, *} statistically significant at the 1 percent, 5 percent, 10 percent levels for a two-tailed test.

CPAI is calculated as $\Delta INV_t/(COGS_t + \Delta INV_t)$ - $\Delta INV_{t-1}/(COGS_{t-1} + \Delta INV_{t-1})$. In the expression, ΔINV_t and ΔINV_{t-1} represent a firm's annual inventory change in years t and t-1, respectively,

calculated based on total (absorption-costing based) inventory value (COMPUSTAT DATA#3). COGS represents a firm's cost of goods sold (COMPUSTAT DATA#41), adjusted upward for depreciation expense (DATA#14).

 ΔFA_t is excess production capacity in year t, which is computed as change in gross fixed assets scaled by total assets minus corresponding industry mean based on two digit SIC code. Similarly, we calculated ΔFA_{t-1} and ΔFA_{t-2} in years t-1 and t-2, respectively. Log (AT) is natural logarithm of total assets to proxy for business size (Log(AT)).

Tobin's Q is calculated as (market value of equity + total liability)/total assets.

Industry Growth is the mean of industry sales changes to proxy for the industry business growth.

Table 3 Regression Results of Equation (2) to Test Research Question 2

 $Prod_{t}/TA_{t-1} = \alpha 0 + \alpha 1(1/TA_{t}) + \alpha 2(Sales_{t-1}/TA_{t-1}) + \alpha 3(Sales_{t}/TA_{t-1}) + \alpha 4(Sales_{t+1}/TA_{t-1}) + \epsilon \quad (2)$

Panel A Sample Partitioned by CPAI Quartile

	Q1	Q2	Q3	Q4
Intercept	-0.0478***	0.0186**	0.0293***	-0.1064***
$1/TA_{t-1}$	0.1761***	0.0258***	0.9124***	0.0991***
$Sales_{t\text{-}1}/TA_{t\text{-}1}$	-0.0216	0.0047	0.0036	0.0602***
Sales _t /TA _{t-1}	0.7660***	0.6777***	0.6193***	0.5865***
$Sales_{t+1}/TA_{t-1}$	-0.1122***	-0.0388*	0.0588***	0.0862***
Adj. R ²	0.4605	0.3784	0.4507	0.5898
N	2,650	2,578	2,475	2,563

Panel B Sample Partitioned by CPAI Signs

	CPAI<=0	CPAI>0
Intercept	0.0096	-0.1188***
1/TA _{t-1}	0.7142***	0.1121***
Sales _{t-1} /TA _{t-1}	0.0215	0.0427***
Sales _t /TA _{t-1}	0.6875***	0.6760***
$Sales_{t+1}/TA_{t-1}$	-0.0743***	0.0575***
Adj. R ²	0.3464	0.5976
N	5,588	4,678

^{***, **, *} statistically significant at the 1 percent, 5 percent, 10 percent levels for a two-tailed test.

CPAI is calculated as $\Delta INV_t/(COGS_t + \Delta INV_t)$ - $\Delta INV_{t-1}/(COGS_{t-1} + \Delta INV_{t-1})$. In the expression, ΔINV_t and ΔINV_{t-1} represent a firm's annual inventory change in years t and t-1, respectively, calculated based on total (absorption-costing based) inventory value (COMPUSTAT DATA#3). COGS represents a firm's cost of goods sold (COMPUSTAT DATA#41), adjusted upward for depreciation expense (DATA#14).

 $\text{Prod}_{t}/\text{TA}_{t\text{-}1}$ is the sum of the cost of goods sold and the change in inventory during the year

scaled by total assets at the beginning of the year.

Sales_{t-1}/TA_{t-1} is prior year sales scaled by total assets at the beginning of the year.

 $Sales_{t}\!/TA_{t\text{-}1} \text{ is current year sales scaled by total assets at the beginning of the year.}$

 $Sales_{t+1}/TA_{t-1}$ is future year sales scaled by total assets at the beginning of the year.